
The Galène videoconferencing server

Juliusz Chroboczek

22 february 2021

1/22



Galène

Galène is a videoconferencing server.

https://galene.org

You’re using it now.

2/22

https://galene.org


Galène UI

UI designed for lectures:

– you start with the camera/microphone off,

switch on with Ready;

– you can share multiple windows;

– breakout groups created automatically;

– video mirroring (mirror in front of webcam).

Compromises were made:

– you can play videos

(watching videos during lockdown)

(currently broken in Chrome/Chromium);

– can switch camera on at login

(apparently essential for meetings).

3/22



Galène UI (2)

UI still incomplete:

– some functions are only available as commands

– type /help in the chat
– students love /msg;
– administator has extra commands (/kick, /mute);

– only one layout for now

– use full screen;
– use picture-in-picture.

Accepted by students, but not by non-CS lecturers.

(Some administrators hate it!)

4/22



Galène

Galène is a videoconferencing server:

– designed for teaching, but useful for meetings;

– easy to compile and deploy

(15 minutes according to Dave);

– small: 7000 lines of Go and 4000 lines of JS;

– minimal server resources:

– 5€/month VPS for 100-person lectures;
– runs fine on a 50€ ARM board;
– multicore scaling

(teaching is eternally underfunded);

– can run off a read-only filesystem.

5/22



The first French lockdown

First French lockdown:

– 17 March through 11 May 2020;

– stuck in 40m2

(Mayor of Paris forbids public parks!);

– working on mobility in IP networks

(no motivation, cannot test);

– need to lecture from home.

Contradictory orders:

– University buys a Zoom licence

(for an undisclosed sum);

– national CNRS forbids Zoom;

– local CNRS uses Zoom.

But some of us prefer self-hosted software!

6/22



The first French lockdown (2)

Need to lecture from home.

– University buys a Zoom licence;

– some of us prefer self-hosted software.

Finally, a self-hosted instance of BigBlueButton:

– often overloaded;

– only allowed for work-related purposes.

BigBlueButton:

– full of features;

– requires serious server-side resources.

7/22



The first French lockdown (3)

BigBlueButton:

– full of features (great for teaching!);

– requires serious server-side resources.

At that point, I should have:

– installed an instance of Jitsi; or

– written a frontent for Janus; or

– looked in more detail at Ion.

But I didn’t. I wrote my own.

Never do that!

(I mean, seriously, don’t.)

8/22



Videoconferencing is difficult

At first sight, videoconferencing is difficult:

– signalling:

– codec negotiation;
– NAT traversal;

– media flow distribution:

– loss recovery;
– congestion control;

– video quality:

– jitter compensation;
– lipsynch;

– video and audio codecs

– oh my!

9/22



Videoconferencing made tolerable: WebRTC

At first sight, videoconferencing is difficult.

It has recently become tolerable: WebRTC:

– a complete videoconferencing stack;

– implemented in major browsers;

– finally agreed on common codecs:

– everyone implements Opus and VP8
(even Apple!).

10/22



WebRTC: a peer-to-peer protocol

WebRTC implemented in

the browser:

– client-server signalling

(WebSocket, REST);

– media is peer-to-peer

(RTP+RTCP+SRTP);

– optional peer-to-peer

data

(SCTP+DTLS).

The media traffic is encrypted end-to-end,

keys negotiated over the signalling channel.

The JavaScript API is simple but inflexible

(leading to “SDP munging”)

(where art thou, ORTC?).

11/22



Peer-to-peer WebRTC doesn’t scale

What happens if you try to broadcast over Webrtc ?

Every p2p flow is encoded, encrypted

and sent separately.

Doesn’t scale beyond 4 or 5 peers.

12/22



Client-server WebRTC

The solution is

client-server:

– client-server signalling;

– client-server media.

No need to reencode the

media.

The server decrypts and reencrypts the video:

there is no end-to-end confidentiality.

(Yes, I know about insertable streams.)

13/22



Digression: Pion

In the peer-to-peer case, WebRTC is in the browser.

Client-server, you need server-side WebRTC:

– RTP and RTCP;

– SRTP;

– SCTP;

– STUN, TURN, ICE…

Pion is a Go implementation of WebRTC:

– pure Go (easy to cross-compile);

– lower layers fairly complete, upper layers in

progress;

– reactive and friendly maintainer (Sean DuBois).

Galène uses Pion. Excellent experience.

14/22



Loss handling

Once you do client-server, where do you handle packet

loss ?

In Galène, we handle

packet loss locally:

– reduces latency;

– requires buffering at

the server.

This buffering does not cause bufferbloat:

packets are forwarded or dropped, never queued;

the buffer is only used to serve NACKs from the client.

15/22



Buffer management

Buffers in Galène : what size?

Packets are not queued, the size doesn’t matter much:

– if too small, we won’t be able to serve NACKs locally

(we forward to the sender, increasing latency);

– if too large, we’ll waste memory.

Currently sized proportionally to

rate ⋅ (maxRTT + 4 ⋅ jitter).

More experimentation is needed.

16/22



Congestion control

How fast can we send data over a given link ?

That’s the problem of congestion control.

WebRTC doesn’t define congestion control.

Browsers implement Google Congestion Control (GCC),

which combines two congestion controllers:

– a traditional loss-based controller

(useless in the presence of bufferbloat);

– a novel delay-based controller.

In Galène, we terminate congestion control at the SFU.

Galène acts as an application-layer proxy.

17/22



Congestion control (2)

We terminate congestion control at the SFU.

The resulting data rate is the minimum of the data

rates acceptable for all clients:

– for small meetings, high rate ;

– during large lectures,

the rate falls down to the minimum.

Potential solutions: simulcast or SVC.

Right now, congestion control in Galène is incomplete:

– complete in the server⟶ client direction ;

– loss-based in the client⟶ server direction.

Due to the prevalence of bufferbloated routers,

this needs fixing.

18/22



Current status

Galène is good enough for lectures with 100 students:

– robust server (doesn’t crash or deadlock);

– robust NAT traversal (many students are on 4G)

(thanks to Pion and ICE);

– robust loss recovery.

Congestion control:

– state of the art in the server⟶client direction

(loss- and delay-based);

– loss-based in the client⟶server direction

(requires manual tweaking on bufferbloated

networks).

19/22



Current status(2)

With a fascist firewall, Galène keeps trying:

– difficult to determine when to give up;

– UI issue: how to indicate that there is a problem?

Good video quality:

– NACKs served locally in a timely manner;

– PLIs aggregated and forwarded to the sender.

Audio quality issues:

– browsers don’t implement (enough) audio FEC

please implement flexfec in the browsers!

20/22



Future plans

Improve the UI:

– Ready/Panic is not obvious;

– multiple layouts;

– contextual menus and mouse-over text;

– alternate frontends?

Vary quality per client:

– simulcast;

– scalable video coding (SVC).

Improve congestion control:

– many networks are bufferbloated!

21/22



Conclusion

Galène is a videoconferencing server:

– easy to deploy;

– easy to understand and improve;

– requires minimal server resources.

https://galene.org

Please install your own instance!

22/22

https://galene.org

