
Nlnet Security Evaluation Report

Galene

V 1.0
Amsterdam, February 10th, 2025
Public

Document Properties

Client Galene

Title NLnet Security Evaluation Report

Target Galene (https://github.com/jech/galene/)

Version 1.0

Pentester Stefan Vink

Authors Stefan Vink, Marcus Bointon

Reviewed by Marcus Bointon

Approved by Melanie Rieback

Version control

Version Date Author Description

0.1 January 19th, 2025 Stefan Vink Initial draft

0.2 January 19th, 2025 Stefan Vink Ready-for-Review

0.3 February 5th, 2025 Marcus Bointon Review

1.0 February 10th, 2025 Marcus Bointon 1.0

Contact

For more information about this document and its contents please contact Radically Open Security B.V.

Name Melanie Rieback

Address Science Park 608
1098 XH Amsterdam
The Netherlands

Phone +31 (0)20 2621 255

Email info@radicallyopensecurity.com

Radically Open Security B.V. is registered at the trade register of the Dutch chamber of commerce under number 60628081.

Table of Contents

1 Executive Summary 5
1.1 Introduction 5

1.2 Scope of work 5

1.3 Project objectives 5

1.4 Timeline 5

1.5 Results In A Nutshell 5

1.6 Summary of Findings 6

1.6.1 Findings by Threat Level 8

1.6.2 Findings by Type 8

1.7 Summary of Recommendations 9

2 Methodology 11
2.1 Planning 11

2.2 Risk Classification 11

3 Reconnaissance and Fingerprinting 13

4 Findings 14
4.1 MAF-003 — Absence of Strict Transport Security Header 14

4.2 MAF-004 — Insecure TLS Versions Enabled on HTTPS 15

4.3 MAF-005 — Brute Force Protection Missing for Login System 17

4.4 MAF-007 — Absence of Password Policy 18

4.5 MAF-014 — Insufficient PBKDF2 Iterations for Secure Password Hashing 19

4.6 MAF-016 — Arbitrary File Write via Path Traversal in Recording Functionality 21

4.7 MAF-017 — Timing Attack Vulnerability in Plain Text Password Comparison 23

4.8 MAF-002 — Insecure Content-Security-Policy Header 24

4.9 MAF-006 — Insufficient Logging of Failed Login Attempts 25

4.10 MAF-010 — Improper Input Validation in Username 26

4.11 MAF-011 — Insufficient Disk Space Management in Galene's Recording System 28

4.12 MAF-013 — Authentication and API Endpoints Lack Rate Limiting 29

5 Non-Findings 30
5.1 NF-008 — Secure Use of AES-ECB Mode in Whip.go for Obfuscation 30

5.2 NF-009 — Allowed External URL Redirection is Configured Securely 30

5.3 NF-012 — Usernames are Properly Verified during Chat Message Transmission 31

5.4 NF-015 — Cross-Site Scripting (XSS) Vulnerabilities Absent 31

6 Future Work 32

7 Conclusion 33

Appendix 1 Testing team 34

Public

1 Executive Summary

1.1 Introduction

Between January 6, 2024 and January 19, 2025, Radically Open Security B.V. carried out a penetration test for Galene

and NLnet NGI Zero Entrust.

This report contains our findings as well as detailed explanations of exactly how ROS performed the penetration test.

1.2 Scope of work

The scope of the penetration test was limited to the following target:

• Galene (https://github.com/jech/galene/)

The scoped services are broken down as follows:

• Pentesting: 4.25 days

• Reporting: 0.75 days

• Total effort: 5 days

1.3 Project objectives

ROS will perform a penetration test of the Galene web application with Galene, in order to assess its security posture. To

do so, ROS will assess it and guide Galene in attempting to find vulnerabilities in the application and its source code.

1.4 Timeline

The security audit took place between January 6, 2024 and January 19, 2025.

1.5 Results In A Nutshell

During this crystal-box penetration test we found 7 Moderate and 5 Low-severity issues.

This security assessment revealed several vulnerabilities across web, API, and infrastructure components, primarily

categorized as moderate-severity threats with potential for significant impact.

The login functionality is susceptible to timing attacks due to improper password comparison, which could facilitate

unauthorized access MAF-017 (page 23). Additionally, the recording feature has a path traversal vulnerability

Executive Summary 5

MAF-016 (page 21), enabling attackers with high-privileged recording permissions to modify or overwrite files,

potentially leading to application crashes or unavailability.

Weak password hashing parameters, set at only 4096 iterations, make hashed passwords vulnerable to cracking

using hardware acceleration tools like Hashcat, especially for users with weak passwords MAF-014 (page 19).

This increases the risk of credential compromise and potential access to other systems if passwords are reused. The

lack of password policies MAF-007 (page 18) further exacerbates this issue by allowing weak or commonly used

passwords, thereby increasing the likelihood of successful brute-force or dictionary attacks. Moreover, the absence

of brute force protection on the login mechanism MAF-005 (page 17) allows unlimited login attempts, raising the

chances of unauthorized account access and exposure of sensitive data.

The web server supports deprecated TLS versions 1.0 and 1.1 MAF-004 (page 15), making it vulnerable to

cryptographic attacks and potential downgrade attacks that could lead to data interception and decryption. The lack of an

HTTP Strict Transport Security (HSTS) header MAF-003 (page 14) also makes the application susceptible to man-in-

the-middle attacks, as users can access it over non-HTTPS connections, enabling SSL stripping and other attacks.

Lower-level threats include the absence of rate limiting on authentication, API, and WebSocket connection endpoints,

which could enable brute-force or denial-of-service attacks MAF-013 (page 29).

The recording system's failure to manage disk space usage could lead to storage exhaustion and potential denial-of-

service conditions for users MAF-011 (page 28).

Additionally, there is insufficient input validation for usernames MAF-010 (page 26), and inadequate logging of

security events MAF-006 (page 25). The latter hinders the detection and response to unauthorized access attempts.

The Content-Security-Policy (CSP) header includes insecure directives such as 'unsafe-eval', data URLs, and

global wildcards, which could be exploited to execute arbitrary JavaScript code or bypass CSP restrictions, increasing

the risk of cross-site scripting (XSS) attacks and potential data theft MAF-002 (page 24).

1.6 Summary of Findings

ID Type Description Threat level

MAF-003 Security Header
Misconfiguration

The application is vulnerable to man-in-the-middle attacks
due to the absence of an HTTP Strict Transport Security
(HSTS) header which prevents users from accessing the
application over non-HTTPS connections.

Moderate

MAF-004 TLS Misconfiguration The web server supports deprecated TLS versions 1.0
and 1.1, making it vulnerable to cryptographic attacks.

Moderate

MAF-005 Lack of Anti Automation The system lacks any form of brute force protection on
its login mechanism, allowing unauthorized users to
repeatedly attempt to guess passwords.

Moderate

MAF-007 Weak Passwords The system lacks a password policy to enforce strong
passwords.

Moderate

6 Radically Open Security B.V.

Public

MAF-014 Weak Passwords Weak password hashing parameters configured with
only 4096 iterations in webserver/api.go and galenectl/
galenectl.go.

Moderate

MAF-016 Path Traversal The recording functionality suffers from a path traversal
vulnerability, allowing attackers to write recordings to
arbitrary paths on the file system beyond the intended
directory.

Moderate

MAF-017 Timing Attack The login functionality is vulnerable to a timing attack due
to improper comparisons when plain-text passwords are
used.

Moderate

MAF-002 Security Header
Misconfiguration

The Content-Security-Policy (CSP) header allows
insecure sources such as 'unsafe-eval', data URLs, and
global wildcards.

Low

MAF-006 Insufficient Logging The application lacks detailed logging for security-related
events such as failed login attempts, which can hinder
timely detection and response to unauthorized access
attempts.

Low

MAF-010 Insufficient Input
Validation

The web application does not enforce proper input
validation on usernames.

Low

MAF-011 Resource Exhaustion Galene's recording system lacks mechanisms to manage
or limit disk space usage.

Low

MAF-013 Resource Exhaustion The lack of rate limiting on authentication, API, and
WebSocket connection endpoints allows potential
attackers to perform brute force attacks or denial-of-
service attacks without any restrictions.

Low

Executive Summary 7

1.6.1 Findings by Threat Level

41.7%

58.3%

Moderate (7)

Low (5)

1.6.2 Findings by Type

8.3%

8.3%

8.3%

8.3%

8.3%

8.3%
16.7%

16.7%

16.7%

Security header misconfiguration (2)

Weak passwords (2)

Resource exhaustion (2)

Tls misconfiguration (1)

Lack of anti automation (1)

Path traversal (1)

Timing attack (1)

Insufficient logging (1)

Insufficient input validation (1)

8 Radically Open Security B.V.

Public

1.7 Summary of Recommendations

ID Type Recommendation

MAF-003 Security Header
Misconfiguration

• Implement HTTP Strict Transport Security (HSTS) header with a long
enough max-age directive to ensure that all future requests are made
over HTTPS.

• Include the includeSubDomains directive to protect all subdomains
under the main domain, if appropriate.

MAF-004 TLS Misconfiguration • Disable TLS 1.0 and 1.1 protocols in the web server configuration.
• Ensure the server configuration only allows modern versions like TLS

1.2 or TLS 1.3, with a preference for TLS 1.3 due to its improved
security features.

MAF-005 Lack of Anti Automation • Implement rate limiting on login attempts to reduce the number of tries
an attacker can make within a given timeframe.

• Introduce account lockout mechanisms after a set number of
failed login attempts to temporarily block further access and alert
administrators.

• Use Captcha challenges following multiple consecutive failed login
attempts to distinguish between automated scripts and human users.

• Implement delay mechanisms that increase the time required to submit
subsequent login attempts after each failure, slowing down brute-force
attacks.

MAF-007 Weak Passwords • Enforce a minimum password length requirement to ensure users
create longer and more complex passwords.

• Develop mechanisms to prevent the use of common passwords or
patterns by maintaining a list of prohibited passwords, for example
by implementing lookups using the haveibeenpwned.com API. See
https://haveibeenpwned.com/API/v3#PwnedPasswords.

MAF-014 Weak Passwords • Increase the PBKDF2 iteration count to at least 600,000 as
recommended by OWASP for enhanced security.

• Regularly update password hashing algorithms and configurations
following evolving best practices and threat models.

• Consider using more advanced hashing algorithms like Argon2 which
offer better resistance against brute-force and GPU-based attacks.

MAF-016 Path Traversal • Implement strict input validation for any user-provided path inputs.
Ensure that paths are normalized and do not contain escape
sequences like .. or /.

• Employ secure coding practices to prevent path traversal attacks, such
as using functions that canonicalize paths before use.

MAF-017 Timing Attack • Use constant-time comparison functions for sensitive data like
passwords.

• Consider only allowing securely hashed passwords.

MAF-002 Security Header
Misconfiguration

• Set default-src 'none' and then define explicit sources for each
content type (e.g., script-src, image-src) rather than relying on
a global fallback to 'self'.

• Remove 'unsafe-eval' from the script-src directive to prevent
execution of unsafe scripts.

Executive Summary 9

https://haveibeenpwned.com/API/v3#PwnedPasswords

• Avoid allowing data: sources in img-src directive to reduce the risk
of XSS exploitation via images.

MAF-006 Insufficient Logging • Enhance logging to include at least details such as timestamp, IP
address and username on each failed login attempt.

MAF-010 Insufficient Input
Validation

• Implement comprehensive input validation for all user-provided data,
including username fields.

MAF-011 Resource Exhaustion • Implement functionality to ensure that only a specified percentage of
free disk space is utilized for recordings, or establish a fixed storage
limit. Once this threshold is reached, the system should automatically
delete the oldest recording.

• Recommend in the installation notes to set the path to an external
partition only used for recordings.

MAF-013 Resource Exhaustion • Implement rate limiting with thresholds based on typical user behavior
patterns and requirements.

10 Radically Open Security B.V.

Public

2 Methodology

2.1 Planning

Our general approach during penetration tests is as follows:

1. Reconnaissance

We attempt to gather as much information as possible about the target. Reconnaissance can take two forms:

active and passive. A passive attack is always the best starting point as this would normally defeat intrusion

detection systems and other forms of protection afforded to the app or network. This usually involves trying to

discover publicly available information by visiting websites, newsgroups, etc. An active form would be more

intrusive, could possibly show up in audit logs and might take the form of a social engineering type of attack.

2. Enumeration

We use various fingerprinting tools to determine what hosts are visible on the target network and, more

importantly, try to ascertain what services and operating systems they are running. Visible services are researched

further to tailor subsequent tests to match.

3. Scanning

Vulnerability scanners are used to scan all discovered hosts for known vulnerabilities or weaknesses. The results

are analyzed to determine if there are any vulnerabilities that could be exploited to gain access or enhance

privileges to target hosts.

4. Obtaining Access

We use the results of the scans to assist in attempting to obtain access to target systems and services, or to

escalate privileges where access has been obtained (either legitimately though provided credentials, or via

vulnerabilities). This may be done surreptitiously (for example to try to evade intrusion detection systems or rate

limits) or by more aggressive brute-force methods. This step also consist of manually testing the application

against the latest (2021) list of OWASP Top 10 risks. The discovered vulnerabilities from scanning and manual

testing are moreover used to further elevate access on the application.

2.2 Risk Classification

Throughout the report, vulnerabilities or risks are labeled and categorized according to the Penetration Testing Execution

Standard (PTES). For more information, see: http://www.pentest-standard.org/index.php/Reporting

These categories are:

• Extreme

Extreme risk of security controls being compromised with the possibility of catastrophic financial/reputational

losses occurring as a result.

Methodology 11

http://www.pentest-standard.org/index.php/Reporting

• High

High risk of security controls being compromised with the potential for significant financial/reputational losses

occurring as a result.

• Elevated

Elevated risk of security controls being compromised with the potential for material financial/reputational losses

occurring as a result.

• Moderate

Moderate risk of security controls being compromised with the potential for limited financial/reputational losses

occurring as a result.

• Low

Low risk of security controls being compromised with measurable negative impacts as a result.

12 Radically Open Security B.V.

Public

3 Reconnaissance and Fingerprinting

We were able to gain information about the software and infrastructure through the following automated scans. Any

relevant scan output will be referred to in the findings.

• Burp Suite Professional – https://portswigger.net/burp/pro

• Semgrep – https://semgrep.dev

Reconnaissance and Fingerprinting 13

https://portswigger.net/burp/pro
https://semgrep.dev/

4 Findings

We have identified the following issues:

4.1 MAF-003 — Absence of Strict Transport Security Header

Vulnerability ID: MAF-003

Vulnerability type: Security Header Misconfiguration

Threat level: Moderate

Description:

The application is vulnerable to man-in-the-middle attacks due to the absence of an HTTP Strict Transport Security

(HSTS) header which prevents users from accessing the application over non-HTTPS connections.

Technical description:

HTTP Strict Transport Security (HSTS) is a web security policy mechanism which helps to protect websites against man-

in-the-middle attacks such as protocol downgrade attacks and cookie hijacking. It allows web servers to declare that web

browsers (or other complying user agents) should interact with it using only secure HTTPS connections, instead of the

insecure HTTP protocol.

This header is missing from responses returned by Galene:

14 Radically Open Security B.V.

Public

Impact:

• Users are vulnerable to man-in-the-middle (MITM) attacks.

• Potential interception and modification of unencrypted data during transmission.

Recommendation:

• Implement HTTP Strict Transport Security (HSTS) header with a long enough max-age directive to ensure that all

future requests are made over HTTPS.

• Include the includeSubDomains directive to protect all subdomains under the main domain, if appropriate.

4.2 MAF-004 — Insecure TLS Versions Enabled on HTTPS

Vulnerability ID: MAF-004

Vulnerability type: TLS Misconfiguration

Threat level: Moderate

Description:

The web server supports deprecated TLS versions 1.0 and 1.1, making it vulnerable to cryptographic attacks.

Technical description:

We used testssl.sh to inspect the TLS configuration of the web server:

Findings 15

https://testssl.sh

The web server permits connections using TLS 1.0 and TLS 1.1 in addition to modern TLS 1.2 and 1.3, when accessing

resources over HTTPS.

These older versions are known to have vulnerabilities that can be exploited by attackers through well-documented

attacks such as POODLE (Padding Oracle On Downgraded Legacy Encryption) and BEAST (Browser Exploit Against

SSL/TLS). These exploits take advantage of weaknesses in the cipher suite implementations within these older

protocols, allowing interception or decryption of encrypted data under specific conditions.

TLS 1.0 was deprecated in 2015 by the Internet Engineering Task Force (IETF) due to its susceptibility to various

cryptographic attacks that undermine confidentiality and integrity, rendering it insecure for sensitive communications.

Similarly, TLS 1.1, while slightly improved, still lacks robust protections against modern threats and is also deprecated.

See RFC 8996 for more information about the deprecation of these versions.

Impact:

• Sensitive user data can be intercepted and decrypted using known attacks on older TLS versions.

• Potential downgrade attacks allow attackers to force a connection to use less secure protocol versions.

• Non-compliance with current security best practices, leading to potential regulatory issues.

Recommendation:

• Disable TLS 1.0 and 1.1 protocols in the web server configuration.

• Ensure the server configuration only allows modern versions like TLS 1.2 or TLS 1.3, with a preference for TLS

1.3 due to its improved security features.

16 Radically Open Security B.V.

https://www.rfc-editor.org/rfc/rfc8996

Public

4.3 MAF-005 — Brute Force Protection Missing for Login System

Vulnerability ID: MAF-005

Vulnerability type: Lack of Anti Automation

Threat level: Moderate

Description:

The system lacks any form of brute force protection on its login mechanism, allowing unauthorized users to repeatedly

attempt to guess passwords.

Technical description:

We observed that no rate-limiting or account lockout policies are in place on excessive login attempts. This oversight

allows malicious actors to attempt brute-force attacks by continuously submitting login requests with various password

combinations.

Typically, such defenses include measures like:

• Rate limiting: Limiting the number of failed attempts per minute/hour.

• Account lockout: Temporarily disabling accounts after several unsuccessful login attempts.

• Captcha integration: Requiring human verification after a set number of failures.

• Delay mechanisms: Introducing incremental time delays between successive failed attempts to thwart automated

attacks.

In the absence of these protections, attackers can exploit this weakness to systematically try to guess passwords. This

not only compromises individual user accounts but also poses a significant risk if they manage to access accounts with

elevated privileges such as administrator roles.

Impact:

• Unrestricted login attempts increase the likelihood of unauthorized account access.

• Sensitive data may be exposed if administrative accounts are compromised.

• User trust and system integrity might be significantly undermined due to potential breaches.

Findings 17

Recommendation:

• Implement rate limiting on login attempts to reduce the number of tries an attacker can make within a given

timeframe.

• Introduce account lockout mechanisms after a set number of failed login attempts to temporarily block further

access and alert administrators.

• Use Captcha challenges following multiple consecutive failed login attempts to distinguish between automated

scripts and human users.

• Implement delay mechanisms that increase the time required to submit subsequent login attempts after each

failure, slowing down brute-force attacks.

4.4 MAF-007 — Absence of Password Policy

Vulnerability ID: MAF-007

Vulnerability type: Weak Passwords

Threat level: Moderate

Description:

The system lacks a password policy to enforce strong passwords.

Technical description:

The application does not currently enforce any password length, complexity, or uniqueness requirements. Password

management is a critical aspect of securing access to systems and protecting sensitive information; a robust password

policy ensures users create strong, unique passwords that are difficult for attackers to guess or crack.

Impact:

• Increased likelihood of brute-force and dictionary attacks succeeding due to lack of password complexity or

uniqueness requirements.

• Potential for unauthorized system access, leading to data breaches or other malicious activities.

• Compromise of user accounts can lead to a cascading effect where attackers gain broader access within an

organization.

18 Radically Open Security B.V.

Public

Recommendation:

• Enforce a minimum password length requirement to ensure users create longer and more complex passwords.

• Develop mechanisms to prevent the use of common passwords or patterns by maintaining a list of prohibited

passwords, for example by implementing lookups using the haveibeenpwned.com API. See https://

haveibeenpwned.com/API/v3#PwnedPasswords.

4.5 MAF-014 — Insufficient PBKDF2 Iterations for Secure Password Hashing

Vulnerability ID: MAF-014

Vulnerability type: Weak Passwords

Threat level: Moderate

Description:

Weak password hashing parameters configured with only 4096 iterations in webserver/api.go and galenectl/

galenectl.go.

Technical description:

Password hashing is essential for protecting user credentials against unauthorized access. PBKDF2 (Password-Based

Key Derivation Function 2) is commonly used for this purpose. It applies a pseudorandom function, such as HMAC-

SHA256, multiple times to the input password. The security of PBKDF2 significantly depends on two factors: the key

length and the iteration count. An adequate number of iterations increases computational complexity, making brute-force

attacks less feasible.

The code in webserver/api.go and galenectl/galenectl.go specifies only 4096 iterations for PBKDF2

hashing.

This value is insufficient by modern standards. OWASP recommends at least 600,000 iterations to secure passwords

effectively against brute-force attacks.

Performance Analysis Using a GPU setup (4090 and 3090) with Hashcat, the current configuration allows approximately

2,626,300 PBKDF2-SHA256 hashes per second:

Speed.#1.........: 1789.5 kH/s (9.03ms) @ Accel:16 Loops:64 Thr:512 Vec:1
Speed..........: 836.6 kH/s (12.28ms) @
 Accel:16 Loops:64 Thr:512 Vec:1
Speed.#*.........: 2626.3 kH/s

This high rate means:

Findings 19

https://haveibeenpwned.com/API/v3#PwnedPasswords
https://haveibeenpwned.com/API/v3#PwnedPasswords

• Approximately 2.63 million passwords tested per second.

• About 157.6 million passwords per minute.

• Up to 9.45 billion passwords can be attempted in an hour.

With these numbers, even complex passwords would be vulnerable. For example, cracking an 8-character password

with mixed case, numbers, and symbols (approximately 6.1 trillion combinations) could take about 27 days under the

current settings.

Improved Configuration With the recommended 600,000 iterations:

The same GPU setup would only manage about 17,900 hashes per second (2,626,300 * 4096/600,000 = ~17,900)

Making the same 8-character password take about 10.8 years to crack (6.1 trillion combinations / 17,900 per second /

86400 seconds per day / 365 days per year ≈ 10.8 years)

This demonstrates why increasing the iteration count to at least 600,000 is crucial for maintaining password security in

2025.

Impact:

• With 4096 iterations, passwords can be cracked rapidly using hardware acceleration tools like Hashcat.

• Users with weak or commonly used passwords are at high risk of having their credentials compromised.

• Attackers could potentially decrypt hashed passwords within hours or days for an 8-character password.

• In case passwords are re-used attackers could use these to gain access to other systems.

Recommendation:

• Increase the PBKDF2 iteration count to at least 600,000 as recommended by OWASP for enhanced security.

• Regularly update password hashing algorithms and configurations following evolving best practices and threat

models.

• Consider using more advanced hashing algorithms like Argon2 which offer better resistance against brute-force

and GPU-based attacks.

20 Radically Open Security B.V.

Public

4.6 MAF-016 — Arbitrary File Write via Path Traversal in Recording
Functionality

Vulnerability ID: MAF-016 Status: Resolved

Vulnerability type: Path Traversal

Threat level: Moderate

Description:

The recording functionality suffers from a path traversal vulnerability, allowing attackers to write recordings to arbitrary

paths on the file system beyond the intended directory.

Technical description:

We discovered a path traversal vulnerability in the recording functionality of the application. The issue arises because

the application allows users to control the paths for saving recordings, and these paths are not properly validated before

being used. As a result, an attacker can manipulate the path to write recordings to any location on the file system where

the application has write permissions.

For example, by providing a path like ../../../../../../tmp/aa as the username, the application writes the

recording to /tmp/aa.webm instead of the expected directory. This behavior indicates that the application fails to

sanitize or restrict the path input, leading to potential security risks.

Findings 21

The vulnerability is partly due to the code allowing escape sequences (e.g., ..) in the path and also because the

username, which is used in constructing the path, lacks proper input validation, as we reported in MAF-010 (page 26).

This combination makes it possible for an attacker to traverse directories and write files to sensitive locations on the

server's file system.

Impact:

• An attacker could modify or overwrite files and recordings with the .webm extension, leading to data corruption or

loss.

• By writing to sensitive locations, the attacker might cause the application or the entire system to crash or become

unavailable.

• Note that the impact is low as it requires recording permissions that are only available to high-privileged accounts.

Recommendation:

• Implement strict input validation for any user-provided path inputs. Ensure that paths are normalized and do not

contain escape sequences like .. or /.

• Employ secure coding practices to prevent path traversal attacks, such as using functions that canonicalize paths

before use.

Update 2025-01-19 05:56:

This resolves the current issues, hence it has been flagged as resolved. To further improve we would also suggest in the

code to not allow path traversal characters in the group name. Not an issue at this stage as users cannot set their own

group but this could become an issue in the future if new functionality would allow user's to create their own groups.

22 Radically Open Security B.V.

Public

Additionally, while usernames are sanitized using the sanitise function, the sanitization only replaces / and \ characters.

Other special characters that could be problematic in filenames (like null bytes, control characters, or other platform-

specific special characters) are not handled.

4.7 MAF-017 — Timing Attack Vulnerability in Plain Text Password
Comparison

Vulnerability ID: MAF-017 Status: Resolved

Vulnerability type: Timing Attack

Threat level: Moderate

Description:

The login functionality is vulnerable to a timing attack due to improper comparisons when plain-text passwords are used.

Technical description:

In the code provided, there is a vulnerability related to password comparison in the 'plain' case. The issue arises from

using direct string comparison with the == operator, which can lead to timing differences based on how much of the

string matches.

Findings 23

Note that due to time constraints, we did not create a proof of concept.

Impact:

• This could make it easier for attackers to potentially gain unauthorized access when plaintext passwords are used

by exploiting this vulnerability.

Recommendation:

• Use constant-time comparison functions for sensitive data like passwords.

• Consider only allowing securely hashed passwords.

Update 2025-01-17 04:17:

Resolved: Reviewed, and has been merged in this commit.

4.8 MAF-002 — Insecure Content-Security-Policy Header

Vulnerability ID: MAF-002

Vulnerability type: Security Header Misconfiguration

Threat level: Low

Description:

The Content-Security-Policy (CSP) header allows insecure sources such as 'unsafe-eval', data URLs, and global

wildcards.

Technical description:

The Content-Security-Policy (CSP) header is a critical security feature that helps mitigate various web vulnerabilities,

including Cross-Site Scripting (XSS), by restricting the sources of sub-resources in a page. The Galene server delivers a

CSP header like this:

connect-src ws: wss: 'self'; img-src data: 'self'; media-src blob: 'self'; script-src 'unsafe-eval'
 'self'; default-src 'self'

24 Radically Open Security B.V.

https://github.com/jech/galene/commit/3e60248e542cc899aea53665332a1627e46e7a5a

Public

This has the following issues:

• The presence of 'unsafe-eval' in script-src allows the execution of potentially unsafe JavaScript code

through functions like eval() and Function().

• data URLs enable embedding image data directly within HTML using base64 encoding (data:image/

png;base64,...).

• The use of 'self' as the default-src can lead to security oversights if specific directives (like img-src,

script-src) are not explicitly defined, and any new directives will automatically be allowed, which may not be

wanted.

• There is no report-uri or report-to directive, so you won't find out about client-side violations of the CSP

rules.

Impact:

• Attackers could execute arbitrary JavaScript code by exploiting 'unsafe-eval'.

• Data URLs in img-src can be used to bypass CSP restrictions, leading to XSS.

• Global wildcards increase the attack surface due to lack of specificity.

• Potential unauthorized access or data theft through crafted payloads.

Recommendation:

• Set default-src 'none' and then define explicit sources for each content type (e.g., script-src, image-

src) rather than relying on a global fallback to 'self'.

• Remove 'unsafe-eval' from the script-src directive to prevent execution of unsafe scripts.

• Avoid allowing data: sources in img-src directive to reduce the risk of XSS exploitation via images.

4.9 MAF-006 — Insufficient Logging of Failed Login Attempts

Vulnerability ID: MAF-006

Vulnerability type: Insufficient Logging

Threat level: Low

Findings 25

Description:

The application lacks detailed logging for security-related events such as failed login attempts, which can hinder timely

detection and response to unauthorized access attempts.

Technical description:

When a user fails to log in, only the message Join group: not authorised appears in the console. This minimal

feedback provides insufficient context for administrators to understand or investigate potential security incidents.

Impact:

• Inability to detect potential brute-force or credential-stuffing attacks.

• Delayed response time in identifying unauthorized access attempts.

• Lack of forensic data for investigating security incidents.

• Potential increase in the risk of successful account compromises.

• Difficulty in assessing threat patterns and implementing proactive defenses.

Recommendation:

• Enhance logging to include at least details such as timestamp, IP address and username on each failed login

attempt.

4.10 MAF-010 — Improper Input Validation in Username

Vulnerability ID: MAF-010 Status: Resolved

Vulnerability type: Insufficient Input Validation

Threat level: Low

Description:

The web application does not enforce proper input validation on usernames.

26 Radically Open Security B.V.

Public

Technical description:

The web application does not enforce input validation on user-provided data for usernames. Users have the ability to

select their own usernames in configurations where wildcards are configured.

Combining this finding with Arbitrary File Write via Path Traversal in Recording Functionality (page 21) allowed us to

write files to different paths of the file system.

We did not find any security issues related to XSS at this stage; however, this could change with new functionality.

Impact:

• The current risk is low, but improper input validation could lead to unauthorized file access or data manipulation if

not addressed before future updates.

Recommendation:

• Implement comprehensive input validation for all user-provided data, including username fields.

Update 2025-01-19 06:03:

Commit resolved the path traversal issue.

Findings 27

4.11 MAF-011 — Insufficient Disk Space Management in Galene's Recording
System

Vulnerability ID: MAF-011

Vulnerability type: Resource Exhaustion

Threat level: Low

Description:

Galene's recording system lacks mechanisms to manage or limit disk space usage.

Technical description:

The Galene voice communication platform utilizes a component known as the diskwriter package for managing

WebM file creation and writing processes related to recordings. Upon review, it becomes evident that there are no

mechanisms within this system to manage or limit disk space usage effectively.

The system is configured with various group settings such as AllowRecording, which control recording permissions

but do not address disk management.

Recordings are written directly to the filesystem without any checks for available space, leading to a potential risk where

recordings could exhaust all available storage on the server.

Impact:

• Recordings may fill up all available disk space, impacting server performance.

• Potential denial-of-service condition for Galene users if storage is exhausted.

Recommendation:

• Implement functionality to ensure that only a specified percentage of free disk space is utilized for recordings, or

establish a fixed storage limit. Once this threshold is reached, the system should automatically delete the oldest

recording.

• Recommend in the installation notes to set the path to an external partition only used for recordings.

28 Radically Open Security B.V.

Public

4.12 MAF-013 — Authentication and API Endpoints Lack Rate Limiting

Vulnerability ID: MAF-013

Vulnerability type: Resource Exhaustion

Threat level: Low

Description:

The lack of rate limiting on authentication, API, and WebSocket connection endpoints allows potential attackers to

perform brute force attacks or denial-of-service attacks without any restrictions.

Technical description:

The application's authentication endpoints, API endpoints, and WebSocket connections lack rate-limiting mechanisms.

Rate limiting serves as a protective measure against various types of attack by restricting the number of requests a user

or system can make to an endpoint within a specific timeframe.

Impact:

• Authentication endpoints are vulnerable to brute-force attacks.

• API endpoints may be overwhelmed by excessive requests, leading to potential denial-of-service conditions.

• The absence of rate limiting allows for easier detection and exploitation of vulnerabilities through automated

means.

• Increased server load can degrade performance and lead to service downtime affecting legitimate users.

Recommendation:

• Implement rate limiting with thresholds based on typical user behavior patterns and requirements.

Findings 29

5 Non-Findings

In this section we list some of the things that were tried but turned out to be dead ends, or represents issues that are not

directly security-related.

5.1 NF-008 — Secure Use of AES-ECB Mode in Whip.go for Obfuscation

The use of AES in ECB mode within the web server component whip.go has been assessed and is deemed secure

given its specific context. Typically, AES-ECB (Electronic Codebook) mode is not recommended because it can

reveal patterns in encrypted data if there are repeated plaintext blocks. However, this implementation avoids such

vulnerabilities due to several key factors.

Firstly, the input being encrypted is always random data of exactly one block size, which eliminates the risk of pattern

revelation that ECB mode inherently has when processing multiple identical blocks of plaintext. Secondly, each ID

generated for encryption uses cryptographically secure random data, ensuring there's no predictability in the input.

Additionally, the primary goal here is obfuscation rather than confidentiality of sensitive information, making the potential

weaknesses of ECB mode less critical.

Furthermore, the session IDs being encrypted are temporary and single-use, reducing the risk window for any

cryptographic attack to exploit these identifiers. In this unique scenario, the identified implementation effectively mitigates

the usual security concerns associated with AES-ECB mode. While maintaining best practices is always advisable, in

this specific use case, ECB mode's limitations do not pose a significant threat.

5.2 NF-009 — Allowed External URL Redirection is Configured Securely

The application has been assessed for potential vulnerabilities associated with redirect configurations allowing external

URLs. It was confirmed that such redirects are permitted intentionally and require server file access to configure. This

design choice ensures that control over redirection behavior is maintained securely.

During testing, no security issues were identified regarding this feature's implementation. The configuration process

necessitates server file access, which adds a layer of protection against unauthorized changes. However, we

recommend that the application could enhance user awareness by displaying a message when a redirect to an external

website occurs. This would provide transparency and potentially mitigate phishing risks.

Additionally, implementing similar notifications for links (especially if its a direct link to malicious file extensions) clicked

within chat messages can further safeguard users by alerting them about navigating away from the trusted environment.

These recommendations aim to improve user experience while maintaining high security standards.

30 Radically Open Security B.V.

Public

5.3 NF-012 — Usernames are Properly Verified during Chat Message
Transmission

The application effectively prevents spoofing of usernames while transmitting chat messages. The verification process

ensures only authenticated users can send messages under their registered identities, maintaining integrity and trust

within the communication platform.

5.4 NF-015 — Cross-Site Scripting (XSS) Vulnerabilities Absent

We evaluated the application thoroughly for Cross-Site Scripting (XSS) vulnerabilities, which are often exploited by

attackers to inject malicious scripts into web pages viewed by other users. This test involved checking various points of

user input across the website and API endpoints where data entered by users could potentially be reflected or stored

without proper sanitization. The outcome of the comprehensive evaluation was positive; we did not find any instances of

vulnerable code or misconfigurations that could lead to XSS attacks.

Non-Findings 31

6 Future Work

• Test the Android application

The developer mentioned that an Android application can also be used, but this was out of scope due to time

constraints in this pentest. We recommend conducting a separate security assessment for this app in the future.

• Retest of findings

When mitigations for the vulnerabilities described in this report have been deployed, a repeat test should be

performed to ensure that they are effective and have not introduced other security problems.

• Regular security assessments

Security is a process that must be continuously evaluated and improved; this penetration test is just a single

snapshot. Regular audits and ongoing improvements are essential in order to maintain control of your corporate

information security.

32 Radically Open Security B.V.

Public

7 Conclusion

We discovered 7 Moderate and 5 Low-severity issues during this penetration test.

We did not find any major issues in Galene that would compromise the application or its users directly.

Most findings were categorized as moderate and low threats. Although no critical vulnerabilities were identified, the

cumulative effect of these moderate and lower-level threats (e.g. insecure password policy, weak hashing, lack of

password brute-forcing) raises the overall risk.

Note that several issues have been resolved (indicated in this report), and others are in progress.

We recommend fixing all of the issues found and then performing a retest in order to ensure that mitigations are effective

and that no new vulnerabilities have been introduced.

Finally, we want to emphasize that security is a process – this penetration test is just a one-time snapshot. Security

posture must be continuously evaluated and improved. Regular audits and ongoing improvements are essential in order

to maintain control of your corporate information security. We hope that this pentest report (and the detailed explanations

of our findings) will contribute meaningfully towards that end.

Please don't hesitate to let us know if you have any further questions, or need further clarification on anything in this

report.

Conclusion 33

Appendix 1 Testing team

Stefan Vink Stefan is an IT professional with a passion for IT security and automation. With 20 years
hands-on experience in a diverse range of IT roles such as automation / scripting /
monitoring / web development / system and network management in Windows and
Linux environments. He has worked for organisations such as the Central Bank of the
Netherlands (DNB), is MCITP, CCNA, LPIC, OSCP certified, and has passed the CISSP
exam. He loves to travel, hike, play tennis & chess, automation, and lives with his family
in Melbourne, Australia.

Melanie Rieback Melanie Rieback is a former Asst. Prof. of Computer Science from the VU, who is also
the co-founder/CEO of Radically Open Security.

Front page image by Slava (https://secure.flickr.com/photos/slava/496607907/), "Mango HaX0ring",
Image styling by Patricia Piolon, https://creativecommons.org/licenses/by-sa/2.0/legalcode.

34 Radically Open Security B.V.

